type
status
date
slug
summary
tags
category
icon
password
Code
- 基于机器学习的恶意流量检查平台,做成了平台
malicious_traffic_detection_platform
iotsecty • Updated Jun 27, 2023
- NetworkTrafficAnalysis 网络流量分析代码
NetworkTrafficAnalysis
bobolike123 • Updated Aug 1, 2023
- 物联网-网络-入侵检测-和分类-使用-可解释-XAI-机器学习-算法
IoT-Network-Intrusion-Detection-and-Classification-using-Explainable-XAI-Machine-Learningharshilpatel1799 • Updated Aug 15, 2023
- 物联网
Iot-Cyber-Security-with-Machine-Learning-Research-Projectharshilpatel1799 • Updated Aug 30, 2023
Paper
- A Deep Multi-Modal Cyber-Attack Detection in Industrial Control Systems
- 基于集成学习的加密恶意流量检测
- 一种基于半监督深度学习的网络恶意流量检测方法
- 物联网网络中恶意流量检测的机器学习模型 物联网网络中恶意流量检测的机器学习模型 /IoT-23 数据集/ |施普林格链接 (springer.com)
- A Deep Hierarchical Network for Packet-Level Malicious Traffic Detection
A Deep Hierarchical Network for Packet-Level Malicious Traffic Detection | IEEE Journals & Magazine | IEEE Xplore
NetworkTrafficAnalysisbobolike123 • Updated Aug 1, 2023
- Machine Learning for Encrypted Malicious Traffic Detection: Approaches, Datasets and Comparative Study [2203.09332] Machine Learning for Encrypted Malicious Traffic Detection: Approaches, Datasets and Comparative Study (arxiv.org)
- An Input-Agnostic Hierarchical Deep Learning Framework for Traffic Fingerprinting
- CCS 2022
Exposing the Rat in the Tunnel: Using Traffic Analysis for Tor-based Malware Detection
Exposing the Rat in the Tunnel | Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
tormalwarefpmalfp • Updated Jul 17, 2023
- New Directions in Automated Traffic Analysis(自动化流量分析 CCS21) New Directions in Automated Traffic Analysis | Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
- S&P 2022 2021 2020 没有相关论文
- NDSS 2023 BARS: Local Robustness Certification for Deep Learning based Traffic Analysis Systems
- NDSS 2021
FlowLens: Enabling Efficient Flow Classification for ML-based Network Security Applications
FlowLens: Enabling Efficient Flow Classification for ML-based Network Security Applications - NDSS Symposium (ndss-symposium.org)
FlowLensdmbb • Updated Jun 21, 2023
- NDSS 2020 Encrypted DNS –> Privacy? A Traffic Analysis Perspective Encrypted DNS -> Privacy? A Traffic Analysis Perspective - NDSS Symposium (ndss-symposium.org)
- NDSS 2020 Practical Traffic Analysis Attacks on Secure Messaging Applications Practical Traffic Analysis Attacks on Secure Messaging Applications - NDSS Symposium (ndss-symposium.org)
- USENIX 2022 Automated Detection of Automated Traffic
- Adaptive Clustering-based Malicious Traffic Classification at the Network Edge Infocom 2021
Adaptive Clustering-based Malicious Traffic Classification at the Network Edge | IEEE Conference Publication | IEEE Xplore
ACIDMobile-Intelligence-Lab • Updated Aug 24, 2023
- Poisoning Attacks on Deep Learning based Wireless Traffic Prediction INFOCOM 2022 Poisoning Attacks on Deep Learning based Wireless Traffic Prediction | IEEE Conference Publication | IEEE Xplore
poisoning-attacks-wireless-traffic-prediction
iQua • Updated Jan 11, 2023
- TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers INFOCOM 2022
TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers | IEEE Conference Publication | IEEE Xplore
TrojanFlow: A Neural Backdoor Attack to Deep Learning-based Network Traffic Classifiers
(其他论文关于神经后门的Code).TrojanNNPurduePAML • Updated Aug 20, 2023
- SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection(关于机器学习用于网络入侵检测的研究) [2305.00550] SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection (arxiv.org)
- FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems [2304.14746] FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems (arxiv.org)
- NDSS 2018 Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection 运用自编码无监督入侵检测识别 Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. (readpaper.com) Code ymirsky/Kitsune-py: A network intrusion detection system based on incremental statistics (AfterImage) and an ensemble of autoencoders (KitNET) (github.com)
- NDSS 2018
Trojaning Attack on Neural Networks (purdue.edu)
INFOCOM 2022后门攻击的原始代码TrojanNNPurduePAML • Updated Aug 20, 2023
- CVPR 2023 神经网络后门
CVPR 2023 Open Access Repository (thecvf.com)
ARCHITECTURAL-BACKDOORS-IN-NEURAL-NETWORKSQuangNguyen2609 • Updated Aug 24, 2023
- 基于联邦学习的入侵检测系统,用的最基本的FedAvg,可以作为code基础Federated-Learning-Based-Intrusion-Detection-SystemiZRJ • Updated Aug 2, 2023
- Generalizing intrusion detection for heterogeneous networks: A stacked-unsupervised federated learning approach | Papers With Code 异构网络的泛化入侵检测:一种堆叠无监督的联邦学习方法,考虑到了FL中的异构问题
- 对比网络流改善网络入侵检测中的类不平衡学习 可能会用在FL中,因为类不平衡,FL中常见ConFlowAshinWang • Updated Jun 13, 2023
流量分析工具
- Wireshark
数据集
- IDS 2018 用于入侵检测系统的数据集,用于研究和评估网络安全领域的算法和模型。该数据集收集了大规模的网络通信数据,包含了来自真实网络环境中的正常流量和各种类型的网络攻击流量。 https://www.unb.ca/cic/datasets/ids-2018.html
数据预处理
- Raw Network Traffic Data Preprocessing and Preparation for Automatic Analysis | IEEE Conference Publication | IEEE XploreRawNetworkDataPreProcessingalothman • Updated Feb 2, 2023
神经后门
- 通过GAN
BackdoorVault
Gwinhen • Updated Aug 21, 2023
暑假先读的论文
暑假论文
- Poisoning Attacks and Data Sanitization Mitigations for Machine Learning Models in Network Intrusion Detection Systems(已读完,无代码)
- VulnerGAN: a backdoor attack through vulnerability amplification against machine learning-based network intrusion detection systems
VulnerGAN-pyliuguangrui-hit • Updated Jul 25, 2023
- Adversarial Network Traffic: Towards Evaluating the Robustness of Deep Learning-Based Network Traffic Classification
AdversarialNetworkTrafficamsadeghzadeh • Updated Aug 13, 2023